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CERTAIN PROBLEMS OF THE THEORY OF

STATISTICAL LINEARIZATION AND ITS APPLICATION

I. Ye. Kazakov

Summary

We will examine the general aspects of the theory of statistical

linearization based on the approximation of an arbitrary nonlinear

transformation of a random function by an equivalent linear operator.

Applicattons of this theory to an analysis of the accuracy of nonlin-

ear automatic control systems are given. Practical methods of deter-

mining the equivalent operator for a nonlinear transformation of ran-

dom functions are recommended.

Introduction

A theoretical probability analysis of the accuracy of nonlinear

dynamic systems in the presence of random disturbances is a very com-

plex p4roblem. As a consequence of this, of oonsiderabl* practical im-

portance for the investigation and designed of nonlinear control eye-

tems is the approximate method of statistical linearization of nonlin-

ear transformations which has been developed and is widely used now
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f1, 2). This method is reasonably simple in a practical application

since the principal calculationsare performed by using the well-devel-

oped linear theory of transformation of random functions. This is the

main practical virtue of the approximate method.

However, the method of statistical linearization ofnonlinesr

transformationswas developed for nonliaear inertia-free elements and

is inapplicable to more complex nonlinear transformations. In addition

it does not take into account the spectrum change df the random func-

tions at the output of the inertia-free element, which is of interest

in certain cases of the calculation of dynamic systems.

The elimination of these shortcomings is possible by the general-

ization of the existing method of statistical linearization based on

the use of the general theory of approximation of random functions

[3, 4]. In this report we have developed a series of statistical lin-

earization of nonlinear operators of a general form on the basis of a

quadratic approximation of the transformed random function. The ap-

plication of this theory to analysis of closed nonlinear continuous

and discontinuous automatic control systems is examined.

i. General Aspects of the Theory of Statistical

Linearization of Nonlinear Transformation

Let the random function I(t) be related with the random function

X(t) by a nonlinear transformation of the general form

Y(1) = fIX (T), fl. (. 1)

The function f is an arbitrary nonlin4r function charaetertzieg

the nonlinear transformation realizable over the iunction X(t) for 4b-

taming the function Y(t). In particular this can be a static dou%-

acteristic of an inertia-free nonlinear element without a lag and ifL
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a lag or a solution of a nonlinear equation of arbitrary fdrm

,(,. ,)Y = F(1,. Y. Y. ..... Y". V o X..... XI"). (1. 2)

where F is a nonlinear function; P (t,•/ is a polynomial relative
dSwith variable coefficients.

In the general case the form of the function f describing the be-

havior of the output value of some dynamic systems can be unknown. In

such a case the dynamic system should be defined physically as a com-

plex of apparatus and the form of the function f relating the output

value Y(t) with the input value X(t) should be determined experiment-

ally.

We will approximate the nonlinear transformation (i.1) by a lin-

ear dependence between the random functions selected on the basis of a

certain criterion of the best approximation of the random function

Y(t) by a linear operator applied to the random function X(t). Let

us represent the random function X(t) and Y(t) as

x (1) =M, (t) +ý x.(t); (L-.3)

Y (1) M, ;(t) -4 Ye() (.•

where mx(t), my(t) are the mathematical expectations of the correspond-

ing random functions including the regular components; X°(t) and YO(t)

are centered random functions.

We will represent the approximating function U(t) as

U M M. (t) + u0 0). (1.5)

The mathematical expectation mu(t) and the random component UO(t) of

the function U(t) will be represented in the form

.() =k, W (, r)(r)d,, (1.6)
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uo (i) = k, W (t., ) XO (v) dv, T)

where ko and k, are the statibtical coefficients of amplification;

W(t, v) is the weight function of the linear system realizing the op-

timal approximation; T is the region of the change of the variables

t and T or the interval of the observation of the function X(t).

For practical purposes we can consider two criteria of the lin-

ear approximation of random functions. The first criterion consists

of fulfilling the condition of equality of the mathematical expecta-

tions and the correlation function of the true and approximate random

function. The second criterion consists of fulfilling the minimum

condition of the mean square value of the difference of the true and

approximate random functions.

By using the first criterion we derived the following equation

for determining Ko, K1 , W(t, -):

m, (,) - k,() ! W (, ,),m. (,r)d,; (1.8)
T

K( ) k, (s)k, ()j W (s, ,) W (•, T') K,(,, T') dvdv'. (1.9)
TT

where K(s,t), KYx(', r') are the correlation functions of the random

functions of Y and X respectively.

Fig. 1. Equivalent linear trans-
formation.

By using the criterion of the minimum of the root mean square
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error at any of T

M (IYV()- U ()I') - MI,

we will obtain for determining the optimal linear approximate operator

the equation [i]

Ky. 4, 1) -ki K,, (1, 1) W (s, v) dv + m, (1) ý (a) - 0, (.i

where

.(a) - m, (2) - W. ý W (s, (t)d,. (1. ii)

Therefore the nonlinear transformation of the general form (lA)

of the random function X(t) is replaced by two linear operations over

the mathematical expectation and random components, as shown in Pig. £.

For a complete determination of the equivalent linear transforma-

tion we must indicate a method of calculating the coefficients ko and

k, as well as a method for finding the weight function W(s, t).

When approximating with respect to the first criterion we will

determine ko from the condition (1,8)

hgQ s. ,.€, (1.12)

We will take coefficient k, equal to

[K(0 (1. 1))

The weight i(s,, t) should be determined from the quadratic integral

equation (1.9).

When approxlustlng aooording to the seeond criterion we have one

equation (1.10) for detenuining the three characteristics Ice, kI,

W(t, ir); therefore, it can also be dealt with by s"leoting two coef-

ficients ko and ks,. We will deternine coefficient ko in the sa



manner as in the first case, by expression (1.12). The coefficient

k, will be determined in the following manner:

k (1 •, (1. ,) (i.1•
Y. -0. 1)*

When determining the coefficient ko on the basis of equality

(1.12), condition (i.II) becomes the following:

•(S)=F0. 4 (.1W

On the strength of equality (1.15), equation (1.10) for determin-

ing the weight function W(s, t) takes the form

(r. t) W (s, T) & K (S. .(1.16)

Therefore, the determination of the approximate linear operator

reduces to a solution of equation (1.16) and a calculation of the co-

efficients ko and k, by formulas (1.12) and (L.14) at given Kyx (s, t),

Kx(-r, t),' m (s), m.('r).

Of practical importance is the case where the interval of observa-

tion of the random function X(t) is a semi-infinite interval

-- < t < T. Then equation (1.16) when s C T takes the form

| K,(r, 1) )W(s. r)dr = I- K,, (s, t). (1.17)
-- oo

2. Equivalent Linear Transformations for

a Nonlinear Circuit

As was shown above the finding of an equivalent linear transforma-

tion lies in calculating the coefficients ko and k, and in a solution

of equation (1.9) relative to W(s, t) when approximating with respect

to the first criterion or equation (1.16) when approximating according

to the second criterion.
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When approximating according to the first criterion a direct sol-

ution of equation (1.9) in the general case is difficult. However,

in the special case where the interval of the change of variables is

semi-infinite and the functions X(t) and Y(t) are stationary, the

equivalent weight function on the basis of (1.9) can be determined by

the following expression:

W •0(i) Owdw. (2.A)

where

a(.'; (2.2)

oy (w) is the srectral density of the random function Y(t);

Ox(w) is the spectral density of the random function X(t).

The determination of the weight function W(s, t) by the second

criterion in the general case based on equation (1.i6) at given func-

tions Ky,(s, t) and K,(r, t) is possible by using the integral canon-

ical concepts of random function (5]. In the special case of practi-

cal importance, where the function X(t) is given for a semi-infinite

interval -- < t < T in the form of an integral canonical presenta-

tion

X, (t) Z. (k z u.(t, X) A,. (2..3)

where Z(X) is white nqise with a correlation function equal to

K (k. It) - 0 (A,) 6 X- . (2.11)

and u(t, X) is the weight function of a certain linear system trans-

forming white noise Z(X) to the random function X°(t), the solution of

equation (1.17) takes the form (5]:
Ky u )n- I

W(S. 1)- A ~ii ~IsTu~.~T (2.5)
-m-T-
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where u'(X, t) is the weight function of the reverse system transform-

ing the random function X to white noise Z; G(X) is the density of the

dispersion of white noise Z.

In an even more particular case, if mx = const, the function

X°(t) is stationary and function YO(t) is stationarily related with

X°(t), then, as shown in (3] and (5], the solution of equation (iA7)

takes the form

W (1)-=2 S(Im) efot do, (2.6)

where

kix (io) = ý 1* (2o-7)

Gx(w) - T(iw) Y*(im) is the spectral density of the random process

X (t); YX (w) is the mutual spectral density. Here the coefficients

ko and k, are determined by the following formulas:

K, (O) M (2.8)Sj W (,r) d-c
0

3. Equivalent Linear Transformation for Nonlinear

Inertia-Free Element

The characteristic of a nonlinear inertia-free element is the

simplest nonlinear function. This form of nonlinear transformation

has been studied in detail in works on statistical linearization.

Such an elementary nonlinear transformation can be approximately re-

placed by an inertia-free linear transformation with with amplifica-

tion coefficients (transmission factor) ko and k, respectively for

the mathematical expectation and the random component. This corres-

ponds to the condition W(t, Tr) - 6(t - r) in formulas (i.6) and (4.7).

-8-



However, to solve certain problems we need a more accurate ap-

proximation of the nonlinear inertia-free transformation based on the

above-mentioned theory.

Of practical importance is the case of a stationary input signal.

Then with a stationary characteristic of the nonlinear element on the

basis of the first criterion, the coefficients ko and k, are deter-

mined by the expression

r
k, 1=O) J * (3.1)

"k. 7 "'- (3.2)
fai, 4D (I )

The frequency characteristic and the weight function of the equiv-

alent linear operator are determined by formulas (2.2) and (2.i).

To use formula (2.1) we must know how to calculate the function

G y(w) for the nonlinear element. This last operation can be performed

fairly simply by assuming a two-dimensional normal distribution law

of the random function X(t) at the input to the nonlinear element.*

(x,, x,)=t - k()
-xexp{ ( -. ')2 + 01'- -"' - 2k, () (xi - m,) (xs - " m, (3.3)

Keeping in mind the known expansion of the function of the normal

distribution into a series

ff -exp- , e!=m- 1' (3.4)

we can obtain reasonably simply the expression for the spectral density

* In the general case of arbitrary distribution we must use an
orthagonal expansion of this law into a series based on the normal
distribution.
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where

A. - t(ax + m.) -dx.

and f is the characteristic of the nonlinear element.

When applying the second method for determining the equivalent

linear operator in the stationary case to the inertia-free nonlinear

element we must use formulas (2.6), (2.7), and (2.8). The calculations

by these formulas require a preliminary determination of the function

Gxy(w) for which we need the coupling moment of the functions Y(t)

and X(t). The coupling moment can be determined by calculations with

the given two-dimensional law of the distribution of random function

x(t) or experimentally.

It is necessary to note that in the normal two-dimensional dis-

tribution law of the function at the input to a symmetrical inertia-

free nonlinear element, as Booton showed [i], the coupling moment of

the input and output random functions is proportional to the correla-

tion function of the input random function. This means that the

equivalent linear operator in this case is inertia-free and can be

characterized by two coefficients: ko and ki.

The equivalent linear transformation for the inertia-free nonlin'.

ear element for the first criterion has recently been investigated by

a number of authors. From these investigations and from an analysis

of the results of the calculations by formulas (2.7)-(2.8) we can make

only preliminary conclusions that approximation of Inertia-free
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nonlinear transformation with respect to the first criterion more ac-

curately reproduces the first two probability moments of random func-

tions in complex circuits containing the given nonlinear element.

4. A Practical Method for Determining the Equivalent

Lineal, Transformation for Nonlinear Circuits

As follows from what has been stated above, the equivalent lin-

ear transformation for a nonlinear circuit can be determined if the

probability characteristic of the random function at the input and

output of the circuit are given. Here the equivalent linear trans-

formation will depend on the form of the nonlinear circuit and on the

probability characteristics at the random function at the input.

It follows from physical considerations of the transformation of

the random function by a nonlinear circuit that the equivalent nonlin-

ear transformation little depends on the form of the correlation func-

tion at the input. These considerations permit us to determine the

equivalent linear transformation of a nonlinear circuit in a certain

form of the random function at the input to the nonlinear circuit hav-

ing a correlation function of the 6-function type. Stationary white

noise X(t) has such a correlation function.

. (r ,, - ):I.i)

where Go is the spectral density of white noise, 21Go is its disper-

sion density. In this case, keeping in mind that the dispersion of

white noise is infinite, we will replace Kx(t, t) in formula (i.i4)

by the oorresponding dispersion density 2w0o. Then we obtain

K (s, s). (4.2)
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Substituting expressions (4.1) and (4.2) into equation (±.i7), we will

reduce it to the form

K (s-.( .•

Introducing the designation

k,(s, 1) - 1 --K,,(s, t) (4. 4)

for the normalized correlation function and showing explicitly the

dependence of W(s, t) on the probability characteristics m% and

6x = J4-oo of the input disturbance of the nonlinear circuit, we can

rewrite formula (4.3) as

The weight function W found depends on mx, 6x and on the form of the
nonlinear circuit. The function kyx (s, t) at different values of mx

and 6x for this circuit can be obtained experimentally upon the effect

on the input of the circuit of white noise with variable characteris-

tics mx and 6x.

L A' r iY It

Fig. 2. Experimental determination
of the equivalent weight function of
h stationary nonlinear circuit.

If the nonlinear circuit is stationary and the mathematical ex-

pectation of its input disturbance is constant, then formula (4.5)

will yield a stationary weight function

W (r. M ., a.) - k , , .• •



Such a weight function corresponds to the frequency characteristic

0 (•. ,M G') - IW(vm. in, -'. (4.7)

This formula can be obtained from expressing (2.7) if we take into

account that in the case under consideration I (iu) - !*(iw) -%r&o,

K," (0) c
k,,=O) K,, (T) , () - dc.

Let us rewrite expression (2.7) in the form

a*00

0

where

go,, MX, OX) (u. m,. a,)g., •). ,, a) = K,. (0)

Therefore, the equivalent linear transformation for a nonlinear

circuit can be calculated beforehand depending on the magnitude of the

mathematical expectation and the standard deviation of the random func-

tion at the input.

A practical method of deteminilhg the equivalent linear transform-

ation of a nonlinear stationary circuit is the experimental determina-

tion of the relation of the input and output random function Kyx(T)

according to the scheme in Fig. 2 and subsequent calculation of the

coefficient ko, k, and the transfer function O(p, m, a). These cal-

culations are performed by the following formulas:

k, (m, KP _•(0o1,.a= ;r -- ;(4.9)

,W(i, on, o) W -W(, m, o)11 (4.O)

• (ll.±±)
h,.(m,a)m - (•e li 2M (4.A2)

S V (V, M. a) dT

0



Example. Let us determine the equivalent linear transformation

with respect to the second criterion for a nonlinear circuit, the

equation of which has the form

(Tp+ I)Y-LAignIX-YI.

When mx - m - const and X°(t) which is stationary white noise having

a level of spectral density Go, let the value my and the function

Kyx (T, m, a), where a2 - 2oro, are experimentally determined or cal-

culated. The function Kyx (T, m, a) for the circuit considered can be

approximated by the expression

K,. (, , a) 3 A ( o, f a) c-o-. .,.,.

fo \

efficient k-(-) for the non-

linear circuit.

From the above formulas (4.9)-(A.i2) we will determine successfully

the coefficient ko, k, and the transfer function 0 (p, M, a)

"A (m. a)'
k,(m, a)=B(m, a)'f; W. M.(p, m, )= -B(,, O) "

Graphs or tables can be compiled for coefficients A(n, a) and B(a, a)

as a numerical example let us examine the case: L - i, T - 0.1, 0 - 0.

-14 -



In this case my - 0. The value of the coefficient B(O, a) coincides

with kl(a), the coefficient A(O,a) - ack1 (a). *The graph in Fig. 3

shows the dependence of the coefficient k1 (a) for this case.

5. The Use of the Theory of Statistical Linearization for

a Theoretical Probability Analysis of Nonlinear Closed Station-

ary Systems

Let us now examine a closed nonlinear dynamic system, which is

shown in Fig. 4. We will write the equations of this system in the

form

L(p)Z=X-Y; Y=-f(Z), (5.A)

where f is the operator of the nonlinear circuit, L(p) is the linear

differential operator. Using statistical linearization of the nonlin-

ear circuit, we will derive two systems of equations. The first sys-

tem for determining the mathematical expectations of the functions is

L (p)m2  - mW; V(p. in, ,) m, -. (5.2)

where Y(p, mz, a) m _z is the equivalent linear operator

z ~ ~ z z ~

of the nonlinear circuit; ko(mz, az) is the statistical coefficient of

amplification of the nonlinear circuit with respect to the mathematical

expectation.

To determine the random components of the functions we will de-

rive the system of equations

L(P) Z-M X-...ye ,' T a,,, m,)Y Y .- (5.')

where kI(m,, Oz) is the statistical coefficient of amplification of

the circuit with respect to the random component.

-15-



Fig. 4. Block diagram
of a nonlinear closed
circuit.

The linear theory of the transformation of random functions is

fully applicable upon integration of systems of equations (5.2) and

(5.3). The solution of these equations must be done by the method of

successive approximation with the use of the graphs of the coefficient

ko(m, a), k1.(m, a), of the analytical expressions for the operator

!(p, m, a), and the graphs of its coefficients.

The theory of statistical linearization is formally extended to

linear systems of discontinuous automatic control by replacement of

the appropriate continuous type of differential equations by equations

in finite differences.

Conclusions

An approximate theoretical probability analysis of nonlinear dy-

namic systems based on the theory of statistical linearization of non-

linear operators opens broad opportunities in the investigation of non-

linear continuous and discontinuous automatic control systems for

which the first two probability moments of random functions are suf-

ficient characteristics.

Two criteria of the approximation of a random function were ex-

amined: i) the criterion of the equality of the first two probability

moments and 2) the criterion of the minimum of the mean square value

of the difference of functions. When approximating the nonlinear

operators the second criterion is more simple in a practical sense.

-A6-



Of practical value is the approximate method of determining the equiva-

lent linear operator with respect to the second criterion based on an

input signal in the form of a stationary random white noise.

A combination of the principle of statistical linearization with

experimental methods of deriving the dynamic characteristic of a non-

linear circuit enables us to investigate real components whose equa-

tions are unknown. Here the experimental determination of the dynamic

characteristic of the nonlinear circuit consists of calculating the

mutual correlation function of the output and input upon a random

signal at the input in the form of a stationary white noise. A normal-

ized mutual correlation function coincides with the weight function of

an equivalent linear operator.

A further development of the theory of statistical linearization

of nonlinear operators should apparently be carried out in the follow-

ing directions: i) an investigation of the accuracy of the method of

statistical linearization of nonlinear operators and the obtainment

of the fundamental and practical estimates of the accuracy of the cal-

culation; 2) an investigation of the limit of the application of the

method of statistical linearization for open and closed dynamic sys-

tems; 3) a study of typical cases of applying the principle of statis-

tical linearization of nonlinear circuits and the accumulation of fac-

tual material on the equivalent characteristics (compilation of tables,

graphs, and algorithms of the calculation of equivalent characteristics).
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DISCUSSION

Questions

I. A. Bol'shakov (USSR). Of considerable interest are closed

systems whose nonlinearity lies in an element separating the error

signal. If the characteristic of this element is at infinity or sim-

ply equals zero, then a stationary distribution of the error of trac-

ing does not exist and the method of statistical linearization is de-

prived of a physical meaning. However, in one of the recent works of

investigator Kazakov, the method of linearization was applied to this

type of nonlinearity. Does the author of the report consider this

legal?

J. M. Milsem (Canada). I would like to ask Mr. Kazakov how valid

is his methods for dynamic nonlinearities in the presence of a closed

control circuit which now by definition are nonlinear? As we are all

in agreement, the distribution of the probability density can consid-

erably differ from gaussian which, by assumption, is at the input of

the circuit.

In addition does the author have any comments relative to an

analytical forecast of the distortion of the distributions of the

probability density in these nonlinear closed circuits?

-±8-



Statements

R. L. Stratonovich (USSR). The problem of statistical lineariza-

tion is very important for an analysis of statistical processes en-

closed automatic control systems when selecting their optimal param-

eters. At the same time if the calculation of the correlation func-

tions needed for linearization is a problem of the same degree of dif-

ficulty as the initial problem (which must be solved by linearization),

then the method to a considerable extent is assured. The generaliza-

tion of the method proposed by Kazakov for the case of inertia trans-

formation requires verification from this point of view.

Heretofore insufficient attention has been devoted to the limits

of applicability of the method of statistical linearization. I will

attempt to enumerate the conditions of the applicability of the method

and the possible sources of errors corresponding to them.

i. It is necessary that the higher moments (third, fourth, and

others) be disregarded for the problem under consideration.

2. It is necessary that a distribution law of a known form be

at the input of the nonlinear element in spite of the presence of feed-

back. I. Ye. Kazakov used the gaussian law of distribution, whereas

in nonlinear systems with a large amplification factor yielding a

small error the gaussian law does not take place. This is shown in

particular in the first and second examples of Barret's report.

Fortunately the gaussian law is not necessary for the application of

the linearization method in the generalized form. For example, in

Barret's examples linearization can be fulfilled by means of the dis-

tribution laws that were found. Hence we see that linearization is an

effective method in combination *ith other methods which serve to

determine the probability density. Here it is necessary mainly to

-19-



mention such a vigorous method of analysis of inertia systems as the

apparatus of tk'e Markow processes.

3. The following shortcoming has heretofore been characteristic

of proposed theories of linearization. They have not taken into ac-

count the fundamental difference of nonlinear transformations from

linear transformations which is manifested in the nonlinear case by

the inequality

K,, K. - K1, > (±)

(whereas in linear transformations this magnitude equals zero). This

effect can be called "losses of correlation" (in contrast to "losses

of information" which does not occur). As a consequence of this in-

equality upon replacing the nonlinear transformation y - f(x) by the

linear transformation y' - a + Ox it is impossible to satisfy with

two coefficients the three equalities:

Y = K.= K;Kee = Kw (2)
(K. = b- b),

Two variations of the method arise. In the first a and a are deter-

mined from the equality y = y'; Kyy K •,y,, and in the second they

are determined by means of equalitiesY -=g'; Kyx- = •x The third

equality remains unsatisfied. This defect can be eliminated. We will

introduce A, the operator destroying the correlation,and we will find

the nonlinear transformation in the form

Y'= a +Px + TAx (3)

(in order not to develop specially a rule with action with operator A,

it is convenient (in the stationary phase) to take it in the form of

a shift operator e-pT for a certain indeterminably large time interval

T). Then the three magnitudes can satisfy all three equalities (2)

-20-



and we obtain:

K,. YK,,K. - K,

We will apply this method to example 2 of Barret's report. The con-

trol system is described by the equation

x + ai = -1(x) + t. (5)

We will set T = 0; %TT - N6(¶); f(-x) = -f(x). In this case the sta-

tionary distribution (Boltz±ann distribution) has the form

2u(z) Lu(s)

Wt (x) ; (u(x)= - !f(x) dx; C-1  e -N x).

Therefore, the magnitude entering into (4) equal

Y=O; K,,=Ctf(x)xe_ Nv dx;
S(6)

KIN = C (x) e I dx.

Substituting (3) and (5) and solving this equation, we find the spec-

tral density of fluctuating of the x-coordinate

- N

s, -= T--w_+X'+' (7)

If we use the imperfect method, then with the first variant the term

-2P would be absent in the demoninator of expression (7) and with the

second variant, the term y2.

4. When performing linearization, strictly speaking it is neces-

sary to satisfy inequality (2) in which the .magnitude x, y pertain to

,ne instant of time, and the corresponding equalities for different

instants of time are:

-2±-
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or in the stationary case

- y; K,'. (r) - K,, ); Ke,(e?) - Kw(v), ( . t0 --t,).

Tnen even in the case of the inertia-free nonlinear transformation

y - f(x), approximation (3) will be replaced by the inertia transform-

ation

OLt) ,(t) + •. t') x(t') dt' + Al i tj x(tj dt'. (9)

where P, 7 satisfy equations:

S; (t, s) K.,(s', t') ds= K. ,(t, t'); (iO)
i • .s). (ts') + T (1, 5). T W, s') II K., (s. s') d, ds' = Kw (I. t').

An increase in the accuracy corresponding to a change to a complete

system (8) is associated, however, with an increase of difficulties

in the calculation. The main difficulty is to find the correlation

functions Kxx, KXy, KY. of a closed system. It is necessary to note

that in example (7) linearization facilitates determination of the

unknown correlation function of the x-coordinates and, .consequently,

the variable y. As for equations (10), in the stationary case they

can by the method of the Fourier transform. Since we are dealing

with a calculating method, we need not observe the condition of the

physical realization of transformation (9).

J. F. Barret (England). I wish to cite the work of Dr. A. T.

Fuller where the problem of statistical linearization for this speci-

fic example is examined.

S. S. L. Chan (USA). I was greatly impressed by the comment of

Mr. Stratonovich coneerning the loss of correlation in nonlinear sys-

tems. However, I have certain doubts. While the output magnitude Z
is as a whole determined by the input noise t, heretofore y and t have
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been correlated in the strict sense of this word. The loss of correl-

ation sooner occurs because of the method of determining co.zelation

functions of the second order than because of an actual loss of cor-

relation between two signals.

Another point of view of this problem is associated apparently

with the use of gaussian-type signals for which the Joint distribution

is fully determined by correlation functions of the second order,

which is invalid for random signals of another type. Correlation

functions cannot represent signals in nonlinear systems like they

represent signals in linear systems. In nonlinear systems even with

an input signal with a gaussian distribution, the distribution of the

output magnitude is not gaussian.

A. A. Pervozvanskiy (USSR). The problem of the limits of the

applicability of the statistical linearization method has two sides:

i) a revelation of the possibilities of the method assuming that the

distribution laws differ from normal; 2) determination of a class eye-

tem for which the method is effectively applicable.

The second question concerns the need to establish the difference

between the distribution laws at the output of a circuit consisting of

inertia-free nonlinearity and a linear filter. An estimate of the

difference with respect to higher moments is difficult.

It is expeditious to use the extreme property of entropy of a

normal process established by Shannon. Somewhat generalizing it we

can assert that the normal process has the highest entropy per degree

of freedom among all processes having an identical determinant com-

posed of correlation function.

A calculation of the entropy at the output of the aforementioned

circuit is not too complex. The expression for entropy of a normal

process with a given correlation determinant was given by Shannon.
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A comparison of these expressions permits us to answer the problem

concerning the degree of normalization. Such an application of the

methods of the information theory can be of substantial interest.

J. K. Lubbock (England). I have two comments relative to this

report.

i. The author asserts that when using the second criterion for

an inertia-free nonlinear element in a stationary system at the out-

put of which the signal has its gaussian distribution, the equivalent

linear operator becomes inertia-free; this result was proved by Nuttall

[i] for a more general class of input processes which he called a

separable class. This is valid also for an even more general semi-

separable class* of processes [2].

+

: am1ific ien't cc~ol
tnP21tnear ,me *K

2. A method of approximation of such a kind is extremely valu-

able for analysis and synthesis of nonlinear systems, in particular

nonlinear closed systems, but one should be very careful when using it

since such cases can be encountered where the error of approximation

can not be disregarded. I don't know, did the author investigate the

order of error which should be expected in any specific pradtical sit-

uation. In one of his early works, Booton [3] cited an example of a

closed system, shown in the figure, which proved to be unsatisfactory

because the error of the system was about .0 times greater than the

* It is not clear in what respect these classes pertain to sep-
erable random processes determined in mathematics. See for example
J. L. Dub, probability processes. ILL, N., 1956. (Editors ocuaent).



magnitude of the input signal. In such an unreal case the input sig-

nal of the nonlinear limiting has almost a gaussian distribution (if

the sigral at the input of the system is gaussian), but if amplifica-

tion of the limiter increases or the time constant of the integrator

decreases so that it operates more satisfactorily as a repeator, then

the method of linearization leads to an equivalent system which is a

very poor approximation of the initial nonlinear system.
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V. S. Pugachuv (USSR). The method of statistical linearization

is in essence an approximate method. Therefore, it can be used only

for an approximate physical analysis of nonlinear systems. This

method in principle is inapplicable for an exact solution of such

problems as, for example, determination of the distribution laws of

parameters of state of a nonlinear circuit. It should be considered

from this point of view..

The idea of the method of statistical linearization is fully

analogous to the idea of the method of harmonic linearization or har-

monlo balance in the detoerinluto theory of nonlinear systems. Both

these methods are convenient practical instruments for an approximate

calculation of nonlinear systems. This explains the extensive prac-

tical use of the method of harmonic linearization, the ever growing

1TD~4-62-~85/+2+~-25-



interest in the method of statistical linearization, and the great

number of works devoted to this method and its application which have

appeared recently in various countries. The report of Kazakov gave a

further generalization of this method which took into account the dis-

tortion of the correlation function upon propagation of random func-

tions through nonlinear elements.

From a practical point of view it is piportant that when using

the general method of statistical linearization described by Kazakov,

we can perform statistical linearization of nonlinear elements directly

from the experimental data.

It should be noted that the improvements in the method of statis-

tical linearization proposed here in the report of R. A. Stratonovich

did not yield anything new in comparison with the general method of

statistical linearization proposed in the report of Kazakov, since the

formula for the output signal of the approximate linear element taken

by Stratonovich is, evidently, a spectral case of the more general

formula contained in Kazakov's report.

I. Ye. Kazakov answers questions asked of him.

Question. Is it possible to determine the law of the distribu-

tion of a random process at the input to a nonlinear element in a

closed system by using the method of statistical linearization?

Answer. By using the method of statistical linearization it is

impossible in principle to determine the distribution law at the in-

put to a nonlinear element in a closed circuit. For this purpose we

need a more complete and accurate method.

Question. Can the method of statistical linearization be used

for nonlinear elements having characteristics of a type of assyuptotic

curve?
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Answer. in principle the equivalent statistical coefficient of

amplification can be determined for any nonlinear dependences. These

statistical coefficients of amplification have a statistical sense.

e stion. In what cases can we use the usual method of statisti-

cal linearization when examining inertia-free nonlinearities in a

closed system and in what cases is it necessary to use the generalized

theory presented in the report?

Answer. When estimating the stability of'a closed circuit having

nonlinear elements it is necessary to use the more complete statisti-

cal characteristics of nonlinear elements which take into account the

changes of the spectrum upon propagation of a signal through the non-

linear element.
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